Статья по выбору УЗИП – второй материал из цикла, посвященного защите оборудования от воздействия импульсных токов и напряжений, возникающих при грозах и коммутационных процессах в сетях.

В новой статье Алексей Леонидович Зоричев рассматривает требования нормативной базы применительно к использованию УЗИП в электроустановке, уделяя особое внимание координации между УЗИП и другими элементами цепи.

УСТРОЙСТВА ЗАЩИТЫ ОТ ИМПУЛЬСНЫХ ПЕРЕНАПРЯЖЕНИЙ

Выбор типа, класса, схемы и места установки

Алексей Зоричев, технический директор, начальник испытательной лаборатории ЗАО «Хакель Рос», г. Санкт-Петербург

Вопросы правильного выбора и применения устройств защиты от импульсных перенапряжений (УЗИП) с точки зрения их способности пропускать импульсные токи заданных величин, координации по уровням напряжения защиты ($U_{\rm p}$) со стойкостью изоляции оборудования электроустановки или с другими УЗИП, устойчивостью к воздействию длительных (временных) перенапряжений и т.д., в той или иной степени рассматриваются одновременно в нескольких нормах МЭК или аутентичных им по содержанию стандартах системы ГОСТ Р [1–8].

Цель данной статьи заключается не в пересказе содержания стандартов, имеющих очень большой объем ссылочной и несистематизированной информации, а в том, чтобы показать взаимосвязь между важными разделами данных документов и, иногда теряющуюся из-за этой раздробленности логику и последовательность решения инженерной задачи по защите оборудования от импульсных перенапряжений.

АЛГОРИТМ ВЫБОРА УЗИП

Необходимость защиты от грозовых перенапряжений зависит от следующих факторов:

- Интенсивность ударов молнии (Ng) в месте нахождения объекта (среднее годовое количество ударов молнии на 1 км²). В РФ это значение можно получить, используя карты грозовой активности по регионам. Полученный параметр будет весьма приблизительным.
- Степень уязвимости электроустановки. Так, подземные линии электроснабжения и их вводы в объекты по понятным причинам считаются менее уязвимыми, чем воздушные.
- Стоимость и/или важность оборудования с точки зрения его функционального назначения. Иногда стоимость вышедшего из строя оборудования несоизмеримо меньше потерь, вызванных нарушениями в технологических процессах. Это может стать важным критерием для усложнения схемы защиты.

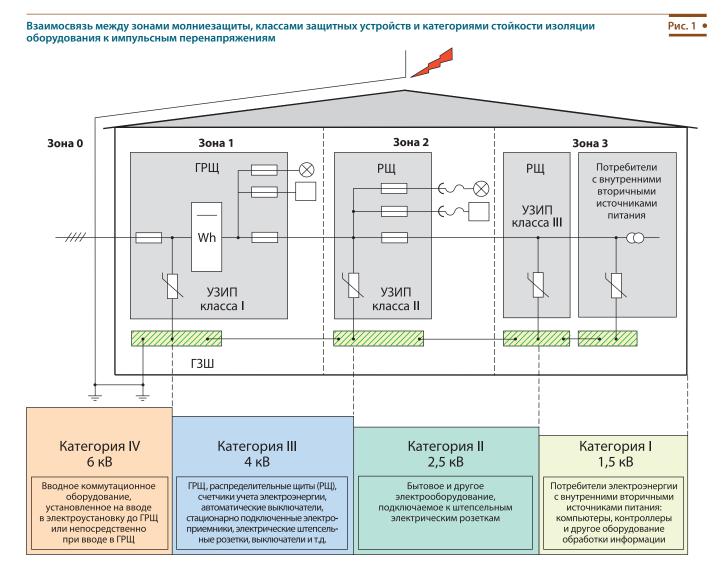
Для правильного выбора УЗИП определенных типов и классов испытаний, мест и схем их установки необходимо соблюдать следующую последовательность действий:

- 1. Рассчитать риск поражения объекта прямым ударом молнии согласно [2], определить необходимый уровень надежности системы внешней молниезащиты и соответствующее ему пиковое значение тока молнии.
- 2. Оценить при помощи методик, предложенных в [1] в приложении Е (более полная и сложная методика) либо в [4] в приложении А (упрощенная методика), токи растекания в точке установки УЗИП. Кроме того, с примерами оценочных расчетов можно ознакомиться в [5] в приложении G.
- 3. Выбрать УЗИП с соответствующими параметрами импульсных токов ($I_{\rm imp}$, $I_{\rm n}$, $I_{\rm max}$). Для обеспечения запаса ресурса УЗИП желательно, чтобы эти параметры превышали на 20–30% рассчитанные значения токов растекания в защищаемых цепях.
- 4. Учесть необходимость координации уровней напряжения защиты (U_p) выбранных УЗИП со стойкостью изоляции оборудования в электроустановке. Рекомендуется выбирать

УЗИП с уровнем защиты по меньшей мере на 20% ниже уровня стойкости изоляции самого чувствительного оборудования.

5. При использовании многоступенчатой схемы включения УЗИП, предусмотренной зонной концепцией молниезащиты, для предотвращения перегрузки и повреждения менее мощных УЗИП, установленных в одной электрической цепи с более мощными, нужно учесть необходимость их координации между собой по уровням напряжения защиты $(U_{\rm p})$ и по распределению между ними токов растекания в соответствии с их пропускной способностью $(I_{\rm imp}, I_{\rm n}, I_{\rm max})$, заявленной производителем. В случае несоответствия УЗИП заданным требованиям, необходимо повторить процедуры по пп. 3. 4 и 5.

Методики необходимых расчетов изложены в [1], [2], [4] и [5].


КООРДИНАЦИЯ МЕЖДУ УЗИП И СТОЙКОСТЬЮ ИЗОЛЯЦИИ ЗАЩИЩАЕМОГО ОБОРУДОВАНИЯ

Одной из задач, решаемых в рамках зонной концепции молниезащиты, является электрическая координация стойкости изоляции оборудования, начиная от ввода в электроустановку и заканчивая конечным потребителем, при воздействии импульсных токов и перенапряжений. Для лучшего понимания теории необходимо изучить содержание [6], раздел 4-43 «Защита от атмосферных или коммутационных перенапряжений».

В данном разделе стандарта рассматривается устойчивость электроустановок и их технологических компонентов к перенапряжениям, поступающим непосредственно из систем распределения электроэнергии (линий электропередачи). Нормы [6] не распространяются на перенапряжения, возникающие при прямых ударах молнии в систему молниезащиты объекта и ударах молнии в непосредственной близости от объекта и его электроустановки. Не действует документ и в области перенапряжений, возникающих в системах передачи информации. Тем не менее [6] дает ряд важных критериев для правильного выбора как электротехнического оборудования, так и УЗИП для его защиты.

Вопросы, перечисленные выше, но не попавшие в область действия [6], рассмотрены в [3] и [5]. Дополнительную информацию по выбору и применению УЗИП в электроустановках должен также дать [7] (вводится в действие с 01.01.2015).

ГОСТ Р 50571-4-44-2011 [6] вводит понятие номинальной стойкости оборудования к импульсным напряжениям как выдерживаемого оборудованием импульсного напряжения, указанного изготовителем для оборудования или его части и характеризующего заданную способность его изоляции выдерживать перенапряжения. Для обеспечения координации по стойкости изоляции между различными частями электроустановок [6] определены категории перенапряжений и дана соответствующая классификация стойкости электротехнического оборудования к импульсным перенапряжениям. В зависимости от места размещения в стационарной электроустановке электротехническое оборудование делится на 4 категории (IV, III, II, I) по стойкости изоляции к импульсным перенапряжениям.

Для каждой категории в зависимости от класса напряжения сети определяются максимально выдерживаемые импульсные перенапряжения (защитные уровни), допускаемые для подключенного оборудования. Так, для сети TN-C переменного тока напряжением 230/400 В импульсное перенапряжение на вводе питающей линии в объект не должно превышать 6 кВ.

Оборудование, установленное на вводе в электроустановку объекта, относят к категории IV. Управление перенапряжением (по терминологии стандарта), а проще говоря, ограничение перенапряжения до заданного уровня обеспечивается установкой ОПН на 6 или 10 кВ на стороне присоединения высоковольтной линии к трансформаторной подстанции (ТП) и при необходимости установкой соответствующих УЗИП на шинах 0,4 кВ ТП либо на элементах подходящей к объекту низковольтной питающей линии (например УЗИП на ВЛ 0,4 кВ).

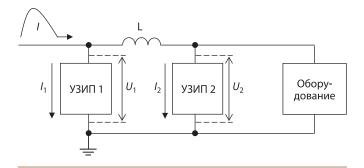
Оборудование, размещенное в ГРІЦ и других элементах внутренней распредсети объекта, относится к категории III с уровнем выдерживаемых импульсных перенапряжений не более 4 кВ. Электроприемники, подключаемые к штепсельным розеткам, относятся к оборудованию категории II (стойкость изоляции – не более 2,5 кВ), а такие потребители, как компьютеры, контроллеры, бытовые приборы с программным управлением и т.п., относятся к категории I (стойкость изоляции – не более 1,5 кВ).

Взаимосвязь между зонами молниезащиты, классами защитных устройств и категориями стойкости изоляции оборудования к импульсным перенапряжениям показана на рис. 1.

Защиту потребителей, подключаемых к электроустановке объекта и имеющих в своем составе вторичные источники питания и электронные компоненты, нужно обеспечивать с учетом их возможной низкой устойчивости к импульсным перенапряжениям. Такие потребители, как уже было сказано, относятся к оборудованию категории І. Для них может требо-

ваться выполнение стандартов по электромагнитной совместимости, например [8], задающих иные критерии устойчивости изоляции к импульсным напряжениям и токам.

Одним из наиболее часто применяемых требований данного стандарта к конкретному типу оборудования (существуют так же более или менее жесткие требования) является стойкость изоляции его портов к импульсным перенапряжениям: не менее 2 кВ для цепей «провод–земля» и не менее 1 кВ для цепей «провод–провод» при подаче комбинированной волны напряжения и тока – 1,2/50 и 8/20 мкс соответственно.


 $\hat{\mathbb{L}}$ ля испытанного таким образом оборудования могут быть подобраны УЗИП, у которых значение U_{p} не превышает заданное. Если при этом для защиты оборудования будет применена многоступенчатая схема включения УЗИП, то необходимо будет проанализировать наличие или отсутствие координации между УЗИП разных ступеней по их уровням защиты (U_{p}) .

КООРДИНАЦИЯ РАБОТЫ УЗИП РАЗНЫХ СТУПЕНЕЙ ЗАЩИТЫ

Важная задача — координация работы УЗИП разных ступеней защиты (УЗИП при этом могут относиться к разным классам испытаний) по способности пропускать импульсные токи определенной длительности и амплитуды. Это означает, например, что если УЗИП данной ступени защиты рассчитан на пропускание импульсного тока волны 8/20 мкс с амплитудой 20 кА, а в реальности будет протекать ток 30 кА волны 8/20 мкс, то этот УЗИП будет разрушен. При этом возможно также превышение $U_{\rm p}$ на клеммах данного УЗИП, что нарушит координацию со стойкостью изоляции защищаемого оборудования, и оно тоже будет повреждено.

Рассмотрим вопрос координации УЗИП между собой более подробно, так как в силу определенных причин он стал инструментом конкурентной борьбы производителей УЗИП.

• Рис. 2. Типовой вариант применения двух УЗИП в электрической цепи

Защитное расстояние УЗИП

В [5] (п. 6.1.2 и приложение К) описывается влияние колебаний на защитное расстояние УЗИП. Возникающие после срабатывания УЗИП колебательные процессы с учетом индуктивной составляющей кабельной линии (КЛ) и емкостной составляющей нагрузки могут иметь выбросы с амплитудой, вдвое превышающей значение $U_{\rm p}$, обеспечиваемого данным УЗИП. В результате УЗИП, размещенное на вводе в электроустановку, не обеспечивает достаточную защиту оборудования при его удалении на расстояние более 10 м по КЛ от места установки УЗИП. Для нагрузок, имеющих емкостный характер, это расстояние может оказаться даже меньше 10 м.

На амплитуду колебаний влияет множество факторов: частотный диапазон воздействующего импульса, длина проводников линии от УЗИП до оборудования, величина активного сопротивления нагрузки и др. Стандарт [5] не дает окончательных рекомендаций по действию в данной ситуации, ссылаясь на то, что проблема находится в стадии изучения. Предлагается уменьшать защитное расстояние УЗИП на величину менее 10 м для нагрузок с активной составляющей, а при наличии емкостной составляющей нагрузки или при расстоянии более 10 м для активной нагрузки устанавливать дополнительное УЗИП непосредственно возле защищаемого оборудования. При этом сразу же возникает вопрос о координации УЗИП.

Координация двух УЗИП в одной питающей линии

В п. 6.2.6 [5] сказано, что в некоторых электроустановках может требоваться применение двух и более УЗИП, чтобы снизить воздействие импульса тока на защищаемое оборудование до приемлемого значения. Для распределения импульса тока между двумя УЗИП в соответствии с их энергостойкостью нужна координация, то есть согласование режимов их работы.

Функцию согласования может выполнять специальный элемент иногда резистивного характера, но чаще всего индуктивного – дроссель, включенный в линию между точками подключения УЗИП для обеспечения распределения импульсных токов и энергии между ними. Кроме того, в этой роли может выступать сама КЛ, точнее, индуктивность отрезка кабеля между двумя УЗИП. Возможны и комбинации обеих составляющих.

Обычно за основное значение берется индуктивность 1 мкГн на длину линии в 1 м. Это значение уже учитывает индуктивность прямого и обратного провода электрической цепи, т.е. оно дано для случая, когда эти проводники разнесены в пространстве между собой. Когда прямой и обратный соединительные провода размещены вблизи друг от друга (находятся в составе одного кабеля), индуктивная петля уменьшается и удельная индуктивность может стать меньше, чем 1 мкГн/м.

На координацию могут также влиять длина проводников от клемм УЗИП до точек подключения к питающей линии, длина волн импульсных токов (частотный диапазон импульсных токов) и параметры УЗИП, особенно их внутреннее сопротивление в открытом состоянии и способность пропускать без повреждения импульсные токи заданной волны и амплитуды.

Вопрос координации (рис. 2) в общем виде заключается в том, какие части тока I_1 и I_2 при поступлении входящего импульса I должны пройти через УЗИП 1 и УЗИП 2 и способны ли эти УЗИП выдержать такую нагрузку. Если длина линии между двумя УЗИП невелика (менее $10\,\mathrm{m}$), а длительность импульса большая (например волна $10/350\,\mathrm{mkc}$), то влияние индуктивности линии

будет незначительным и УЗИП 2 может испытать перегрузку. Объясняется это тем, что импульсные токи большой длительности имеют более низкий частотный диапазон, что уменьшает индуктивное и соответственно полное сопротивление линии, соединяющей УЗИП 1 и УЗИП 2, в момент протекания импульсного тока.

Необходимая координация достигается выбором УЗИП с соответствующими параметрами в каждой ступени защиты для снижения значения I_2 до приемлемого для УЗИП 2 уровня с учетом полного сопротивления электрической цепи между двумя УЗИП. Уменьшение значения I_2 приводит также к снижению остающегося напряжения U_2 на УЗИП 2 до значения, необходимого для правильной координации со стойкостью изоляции защищаемого оборудования. Такие же вопросы возникают и при применении трехступенчатой схемы защиты.

При этом недостаточно связывать задачу координации только с величиной импульсных токов, протекающих через УЗИП. Нужно учитывать также и рассеиваемую данными УЗИП энергию, так как при одной и той же амплитуде исходного тока воздействия I его длительность может уменьшаться или увеличиваться, что изменяет передаваемую в каждое УЗИП энергию и может серьезно влиять на работу схемы защиты и ее исправность.

Энергетическая координация двух УЗИП достигнута, если для всех значений импульсных токов, предусмотренных характеристиками УЗИП 2, значение энергии, рассеиваемой в нем, будет меньше или равно его максимальной энергетической стойкости $(E_{\rm max~2})$. Возможны ситуации, когда, по условиям размещения и согласно расчетам, УЗИП двух соседних ступеней защиты должны быть способны рассеивать одинаковую энергию для обеспечения нормальной работы схемы защиты. Особенно это касается воздействия длинных волн тока. Встречаются и другие нестандартные варианты.

Дополнительная информация с практическими примерами по расчету параметров УЗИП и элементов связи между ними для их эффективной координации дана в [5] (приложения К и F). При этом в стандарте также предлагается достаточно простое решение данной проблемы без необходимости выполнения сложных инженерных расчетов. В случае, если применяются УЗИП одного и того же производителя, целесообразно запросить у него информацию относительно расстояния, полного сопротивления или необходимой индуктивности (параметров дросселя) между выбранными УЗИП. Практика показала, что для большинства проектных решений этой информации будет достаточно.

ЛИТЕРАТУРА

- 1. ГОСТ Р МЭК 62305-1-2010. Менеджмент риска. Защита от молнии. Часть 1. Общие принципы.
- 2. ГОСТ Р МЭК 62305-2-2010. Менеджмент риска. Защита от молнии. Часть 2. Оценка риска.
- 3. IEC 62305-4: 2010. Protection against lightning. Part 4. Electrical and electronic systems within structures. (Пер. с англ.: Защита от молнии. Часть 4. Электрические и электронные системы внутри конструкций).
- 4. ГОСТ Р 51992-2011 (МЭК 61643-1:2005). Устройства защиты от импульсных перенапряжений низковольтные. Часть 1. Устройства защиты от импульсных перенапряжений в низковольтных силовых распределительных системах. Технические требования и методы испытаний.
- 5. ГОСТ Р МЭК 61643-12-2011. Устройства защиты от импульсных перенапряжений низковольтные. Часть 12. Устройства защиты от импульсных перенапряжений в низковольтных силовых распределительных системах. Принципы выбора и применения.
- 6. ГОСТ Р 50571-4-44-2011 (МЭК 60364-4-44:2007). Электроустановки низковольтные. Часть 4-44. Требования по обеспечению безопасности. Защита от отклонений напряжения и электромагнитных помех.
- 7. ГОСТ Р 50571.5.53-2013/МЭК 60364-5-53:2002. Электроустановки низковольтные. Часть 5-53. Выбор и монтаж электрооборудования. Отделение, коммутация и управление. Вводится с 01.01.2015.
- 8. ГОСТ Р 51317.4.5-99 (МЭК 61000-4-5-95). Совместимость технических средств электромагнитная. Устойчивость к микросекундным импульсным помехам большой энергии. Требования и методы испытания.